Toxic fibrillar oligomers of amyloid-β have cross-β structure.
نویسندگان
چکیده
Although amyloid fibers are found in neurodegenerative diseases, evidence points to soluble oligomers of amyloid-forming proteins as the cytotoxic species. Here, we establish that our preparation of toxic amyloid-β(1-42) (Abeta42) fibrillar oligomers (TABFOs) shares with mature amyloid fibrils the cross-β structure, in which adjacent β-sheets adhere by interpenetration of protein side chains. We study the structure and properties of TABFOs by powder X-ray diffraction, EM, circular dichroism, FTIR spectroscopy, chromatography, conformational antibodies, and celluar toxicity. In TABFOs, Abeta42 molecules stack into short protofilaments consisting of pairs of helical β-sheets that wrap around each other to form a superhelix. Wrapping results in a hole along the superhelix axis, providing insight into how Abeta may form pathogenic amyloid pores. Our model is consistent with numerous properties of Abeta42 fibrillar oligomers, including heterogenous size, ability to seed new populations of fibrillar oligomers, and fiber-like morphology.
منابع مشابه
Modulation of Amyloid β-Protein (Aβ) Assembly by Homologous C-Terminal Fragments as a Strategy for Inhibiting Aβ Toxicity.
Self-assembly of amyloid β-protein (Aβ) into neurotoxic oligomers and fibrillar aggregates is a key process thought to be the proximal event leading to development of Alzheimer's disease (AD). Therefore, numerous attempts have been made to develop reagents that disrupt this process and prevent the formation of the toxic oligomers and aggregates. An attractive strategy for developing such reagen...
متن کاملPotential Therapeutic Strategies to Prevent the Progression of Alzheimer to Disease States
Senile plaques are mainly composed of different species of fibrillar β-amyloid (Aβ), a product of the cleavage of the β-amyloid precursor protein (APP), and they are surrounded by dystrophic neurites, reactive astrocytes and microglia. Aβ fibrillar deposits also occur in diffuse plaques, subpial deposits and in the wall of the cerebral and meningeal blood vessels in the form of amyloid angiopat...
متن کاملConformational differences between two amyloid β oligomers of similar size and dissimilar toxicity.
Several protein conformational disorders (Parkinson and prion diseases) are linked to aberrant folding of proteins into prefibrillar oligomers and amyloid fibrils. Although prefibrillar oligomers are more toxic than their fibrillar counterparts, it is difficult to decouple the origin of their dissimilar toxicity because oligomers and fibrils differ both in terms of structure and size. Here we r...
متن کاملToxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure.
Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-amino-acid protein AS (α-synuclein). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Similar to other neurodegenerative diseases, cytotoxicity is currently attributed to ...
متن کاملAn Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase
The formation of well-defined filamentous amyloid structures involves a polydisperse collection of oligomeric states for which relatively little is known in terms of structural organization. Here we use extensive, unbiased explicit solvent molecular dynamics (MD) simulations to investigate the structural and dynamical features of oligomeric aggregates formed by a number of highly amyloidogenic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 20 شماره
صفحات -
تاریخ انتشار 2012